Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114113, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625792

RESUMO

The continuous regeneration of spermatogonial stem cells (SSCs) underpins spermatogenesis and lifelong male fertility, but the developmental origins of the SSC pool remain unclear. Here, we document that hnRNPU is essential for establishing the SSC pool. In male mice, conditional loss of hnRNPU in prospermatogonia (ProSG) arrests spermatogenesis and results in sterility. hnRNPU-deficient ProSG fails to differentiate and migrate to the basement membrane to establish SSC pool in infancy. Moreover, hnRNPU deletion leads to the accumulation of ProSG and disrupts the process of T1-ProSG to T2-ProSG transition. Single-cell transcriptional analyses reveal that germ cells are in a mitotically quiescent state and lose their unique identity upon hnRNPU depletion. We further show that hnRNPU could bind to Vrk1, Slx4, and Dazl transcripts that have been identified to suffer aberrant alternative splicing in hnRNPU-deficient testes. These observations offer important insights into SSC pool establishment and may have translational implications for male fertility.


Assuntos
Espermatogênese , Espermatogônias , Animais , Masculino , Camundongos , Células-Tronco Germinativas Adultas/metabolismo , Processamento Alternativo/genética , Diferenciação Celular , Espermatogênese/genética , Espermatogônias/metabolismo , Espermatogônias/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Testículo/metabolismo , Testículo/citologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo
2.
EMBO Rep ; 25(4): 2045-2070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454159

RESUMO

Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.


Assuntos
Proteínas do Citoesqueleto , Infertilidade Masculina , Teratozoospermia , Tiazóis , Humanos , Masculino , Animais , Camundongos , Teratozoospermia/metabolismo , Teratozoospermia/patologia , Sêmen/metabolismo , Espermatozoides/metabolismo , Cabeça do Espermatozoide/fisiologia , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Dineínas/metabolismo , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Gene ; 893: 147883, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37839768

RESUMO

Genetic and epigenetic changes in sperm caused by male aging may be essential factors affecting semen parameters, but the effects and specific molecular mechanisms of aging on male reproduction have not been fully clarified. In this study, to explore the effect of aging on male fertility and seek the potential molecular etiology, we performed high-throughput RNA-sequencing in isolated spermatogenic cells, including pachytene spermatocytes (marked by the completion of chromosome synapsis) and round spermatids (produced by the separation of sister chromatids) from the elderly and the young men. Functional enrichment analysis of differentially expressed genes (DEGs) in round spermatids between the elderly and young showed that they were significantly enriched in gamete generation, spindle assembly, and cilium movement involved in cell motility. In addition, the expression levels of DEGs in round spermatids (post-meiotic cells) were found to be more susceptible to age. Furthermore, ten genes (AURKA, CCNB1, CDC20, CCNB2, KIF2C, KIAA0101, NR5A1, PLK1, PTTG1, RAD51AP1) were identified to be the hub genes involved in the regulation of sperm quality in the elderly through Protein-Protein Interaction (PPI) network construction and measuring semantic among GO terms and gene products. Our data provide aging-related molecular alterations in meiotic and post-meiotic spermatogenic cells, and the information gained from this study may explain the abnormal aging-related male fertility decline.


Assuntos
Sêmen , Espermátides , Masculino , Humanos , Idoso , Espermátides/metabolismo , Espermatozoides/metabolismo , Perfilação da Expressão Gênica , Fertilidade/genética , Espermatogênese/genética
4.
J Cell Biol ; 222(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930220

RESUMO

Pachytene piRNA biogenesis is a hallmark of the germline, distinct from another wave of pre-pachytene piRNA biogenesis with regard to the lack of a secondary amplification process known as the Ping-pong cycle. However, the underlying molecular mechanism and the venue for the suppression of the Ping-pong cycle remain elusive. Here, we showed that a testis-specific protein, ADAD2, interacts with a TDRD family member protein RNF17 and is associated with P-bodies. Importantly, ADAD2 directs RNF17 to repress Ping-pong activity in pachytene piRNA biogenesis. The P-body localization of RNF17 requires the intrinsically disordered domain of ADAD2. Deletion of Adad2 or Rnf17 causes the mislocalization of each other and subsequent Ping-pong activity derepression, secondary piRNAs overproduced, and disruption of P-body integrity at the meiotic stage, thereby leading to spermatogenesis arrested at the round spermatid stage. Collectively, by identifying the ADAD2-dependent mechanism, our study reveals a novel function of P-bodies in suppressing Ping-pong activity in pachytene piRNA biogenesis.


Assuntos
RNA de Interação com Piwi , Corpos de Processamento , Masculino , Prófase Meiótica I , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espermatogênese/genética
5.
Development ; 150(3)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36718792

RESUMO

Spermatogenesis depends on the crosstalk of Sertoli cells (SCs) and germ cells. However, the gene regulatory network establishing the communications between SCs and germ cells remains unclear. Here, we report that heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) in SCs is essential for the establishment of crosstalk between SCs and germ cells. Conditional knockout of hnRNPH1 in mouse SCs leads to compromised blood-testis barrier function, delayed meiotic progression, increased germ cell apoptosis, sloughing of germ cells and, eventually, infertility of mice. Mechanistically, we discovered that hnRNPH1 could interact with the splicing regulator PTBP1 in SCs to regulate the pre-mRNA alternative splicing of the target genes functionally related to cell adhesion. Interestingly, we also found hnRNPH1 could cooperate with the androgen receptor, one of the SC-specific transcription factors, to modulate the transcription level of a group of genes associated with the cell-cell junction and EGFR pathway by directly binding to the gene promoters. Collectively, our findings reveal a crucial role for hnRNPH1 in SCs during spermatogenesis and uncover a potential molecular regulatory network involving hnRNPH1 in establishing Sertoli-germ cell crosstalk.


Assuntos
Células de Sertoli , Espermatogênese , Animais , Masculino , Camundongos , Fertilidade/fisiologia , Células Germinativas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos Knockout , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Células de Sertoli/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Fatores de Transcrição/metabolismo
6.
Nat Commun ; 13(1): 3588, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739118

RESUMO

Coordinated regulation of alternative pre-mRNA splicing is essential for germ cell development. However, the underlying molecular mechanism that controls alternative mRNA expression during germ cell development remains elusive. Herein, we show that hnRNPH1 is highly expressed in the reproductive system and recruits the PTBP2 and SRSF3 to modulate the alternative splicing in germ cells. Conditional knockout Hnrnph1 in spermatogenic cells causes many abnormal splicing events, thus affecting the genes related to meiosis and communication between germ cells and Sertoli cells. This is characterized by asynapsis of chromosomes and impairment of germ-Sertoli communications, which ultimately leads to male sterility. Markedly, Hnrnph1 germline-specific mutant female mice are also infertile, and Hnrnph1-deficient oocytes exhibit a similar defective synapsis and cell-cell junction as seen in Hnrnph1-deficient male germ cells. Collectively, our data support a molecular model wherein hnRNPH1 governs a network of alternative splicing events in germ cells via recruitment of PTBP2 and SRSF3.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas , Proteínas do Tecido Nervoso , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Fatores de Processamento de Serina-Arginina , Animais , Feminino , Células Germinativas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Splicing de RNA , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Células de Sertoli/metabolismo
7.
Biol Reprod ; 107(1): 168-182, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35284939

RESUMO

During male meiosis, the constitutively unsynapsed XY chromosomes undergo meiotic sex chromosome inactivation (MSCI), and the DNA damage response (DDR) pathway is critical for MSCI establishment. Our previous study showed that UHRF1 (ubiquitin-like, with PHD and ring finger domains 1) deletion led to meiotic arrest and male infertility; however, the underlying mechanisms of UHRF1 in the regulation of meiosis remain unclear. Here, we report that UHRF1 is required for MSCI and cooperates with the DDR pathway in male meiosis. UHRF1-deficient spermatocytes display aberrant pairing and synapsis of homologous chromosomes during the pachytene stage. In addition, UHRF1 deficiency leads to aberrant recruitment of ATR and FANCD2 on the sex chromosomes and disrupts the diffusion of ATR to the XY chromatin. Furthermore, we show that UHRF1 acts as a cofactor of BRCA1 to facilitate the recruitment of DDR factors onto sex chromosomes for MSCI establishment. Accordingly, deletion of UHRF1 leads to the failure of meiotic silencing on sex chromosomes, resulting in meiotic arrest. In addition to our previous findings, the present study reveals that UHRF1 participates in MSCI, ensuring the progression of male meiosis. This suggests a multifunctional role of UHRF1 in the male germline.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Pareamento Cromossômico , Cromossomos Sexuais , Ubiquitina-Proteína Ligases , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Dano ao DNA , Masculino , Meiose/genética , Camundongos , Cromossomos Sexuais/genética , Espermatócitos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Biochem Biophys Res Commun ; 596: 71-75, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121371

RESUMO

The mouse WD repeat and FYVE domain containing 1 (Wdfy1) gene is located in chromosome 1qC4 and spans over 73.7 kilobases. It encodes a protein of 410-amino acid protein that shares 97.8% amino acid sequence identity with the human WDFY1 protein. However, the expression pattern of WDFY1 in reproductive organs and its function in male fertility remain unknown. In this study, we generated transgenic mice expressing FLAG-Wdfy1-mCherry cDNA driven by the Wdfy1 promoter to clarify the expression of WDFY1. The results showed that WDFY1 is highly expressed in mouse testes and located in the cytoplasm of late pachytene spermatocytes to elongated spermatids. Interestingly, the global Wdfy1 knockout (KO) male mice displayed normal growth, development, and fertility. Further histological analysis of Wdfy1 knockout mouse testes revealed that all spermatogenic cells are present in Wdfy1 KO seminiferous tubules. Together, our data demonstrate that WDFY1 is dispensable for mouse spermatogenesis and male fertility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fertilidade/genética , Regulação da Expressão Gênica , Espermatogênese/genética , Testículo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Feminino , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermátides/citologia , Espermátides/metabolismo , Testículo/citologia , Repetições WD40/genética
9.
J Cell Sci ; 135(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34931239

RESUMO

Transcription factor-like 5 (TCFL5) is a testis-specific protein that contains the basic helix-loop-helix domain, but the in vivo functions of TCFL5 remain unknown. Herein, we generated CRISPR/Cas9-mediated knockout mice to dissect the function of TCFL5 in mouse testes. Surprisingly, we found that it was difficult to generate homozygous mice with the Tcfl5 deletion as the heterozygous males (Tcfl5+/-) were infertile. However, we did observe markedly abnormal phenotypes of spermatids and spermatozoa in the testes and epididymides of Tcfl5+/- mice. Mechanistically, we demonstrated that TCFL5 transcriptionally and post-transcriptionally regulated a set of genes participating in male germ cell development via TCFL5 ChIP-DNA and eCLIP-RNA high-throughput sequencing. We also identified a known RNA-binding protein, FXR1, as an interacting partner of TCFL5 that may coordinate the transition and localization of TCFL5 in the nucleus. Collectively, we herein report for the first time that Tcfl5 is haploinsufficient in vivo and acts as a dual-function protein that mediates DNA and RNA to regulate spermatogenesis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Espermatogênese , Testículo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA/metabolismo , Fertilidade/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo
10.
Cell Mol Life Sci ; 78(11): 4893-4905, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33835194

RESUMO

Emerging evidence shows that m6A, one of the most abundant RNA modifications in mammals, is involved in the entire process of spermatogenesis, including mitosis, meiosis, and spermiogenesis. "Writers" catalyze m6A formation on stage-specific transcripts during male germline development, while "erasers" remove m6A modification to maintain a balance between methylation and demethylation. The different functions of RNA-m6A transcripts depend on their recognition by "readers". m6A modification mediates RNA metabolism, including mRNA splicing, translation, and degradation, as well as the maturity and biosynthesis of non-coding RNAs. Sperm RNA profiles are easily affected by environmental exposure and can even be inherited for several generations, similar to epigenetic inheritance. Here, we review and summarize the critical role of m6A in different developmental stages of male germ cells, to understand of the mechanisms and epigenetic regulation of m6A modifications. In addition, we also outline and discuss the important role of non-coding RNAs in spermatogenesis and RNA modifications in epigenetic inheritance.


Assuntos
Epigênese Genética , RNA/metabolismo , Espermatozoides/metabolismo , Enzimas AlkB/metabolismo , Animais , Humanos , Masculino , Metiltransferases/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Espermatogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA